The introduction of CNC machines has radically changed the manufacturing industry. Curves are as easy to cut as straight lines, complex 3-D structures are relatively easy to produce, and the number of machining steps that required human action has dramatically reduced. With the increased automation of manufacturing processes with CNC machining, considerable improvements in consistency and quality can be achieved.
CNC automation reduced the frequency of errors and provided CNC operators with time to perform additional tasks. CNC automation also allows for more flexibility in the way parts are held in the manufacturing process and the time required changing the machine to produce different components. In a production environment, a series of CNC machines may be combined into one station, commonly called a "cell", to progressively machine a part requiring several operations.
CNC controller is the "brain" of a CNC machine, whereas the physical configuration of the machine tool is the "skeleton". A thorough understanding of the physical configuration of a machine tool is always a priority for a CNC programmer as well as the CNC machine tool manufacturers. This chapter starts with a historical perspective of CNC machine tools. Two typical types of CNC machine tools (i.e. vertical and horizontal machining centers) are first discussed. Tooling systems for a CNC machine tool are integral part of a CNC system and are therefore elaborated. Also discussed are the four principal elements of a CNC machine tool. They are machine base, machine spindle, spindle drive, and slide drive. What letter should be assigned to a linear or rotary axis and what if a machine tool has two sets of linear axes? These questions are answered later in the chapter. In order for readers to better comprehend the axis and motion designations, a number of machine tool schematics are given.