Jet Propulsion is the thrust imparting forward motion to an object, as a reaction to the rearward expulsion of a high-velocity liquid or gaseous stream. A simple example of jet propulsion is the motion of an inflated balloon when the air is suddenly discharged. While the opening is held closed, the air pressure within the balloon is equal in all directions; when the stem is released, the internal pressure is less at the open end than at the opposite end, causing the balloon to dart forward. Not the pressure of the escaping air pushing against the outside atmosphere but the difference between high and low pressures inside the balloon propels it. An actual jet engine does not operate quite as simply as a balloon, although the basic principle is the same. More important than pressure imbalance is the acceleration due to high velocities of the jet leaving the engine. This is achieved by forces in the engine that enable the gas to flow backward forming the jet. Newton's second law shows that these forces are proportional to the rate at which the momentum of the gas is increased. For a jet engine, this is related to the rate of mass flow multiplied by the rearward-leaving jet velocity. Newton's third law, which states that every force must have an equal and opposite reaction, shows that the rearward force is balanced by a forward reaction, known as thrust. This thrusting action is similar to the recoil of a gun, which increases as both the mass of the projectile and its muzzle velocity are increased. High-thrust engines, therefore, require both large rates of mass flow and high jet-exit velocities, which can only be achieved by increasing internal engine pressures and by increasing the volume of the gas by means of combustion.