The performance characteristics of an engine and the concentration level of the exhaust emissions depend, to a large extent, on the combustion pattern. It directly depends on fuel system, which provides an appropriate mixture of fuel and air to the engine at the appropriate point in the cycle. The fuel air mixture must be in right proportion as per the condition of the speed and load on the engine. The overall engine behavior depends upon the fuel induction mechanism. Introduction of a CNG kit to the existing gasoline engine hardware does not involve any substantial modifications except inducting the mixture into the intake manifold. However, in spite of the excellent characteristics and various advantages of CNG as a fuel in vehicles, it has certain problems, when used in vehicles, like backfiring during suction, knocking at higher compression ratio with advanced spark timing; these problems are due to inappropriate technology used for the formation of the mixture. In consideration of the inherent constraints in the design of carburetor, the engine manufacturers and automobile industries now are switching over to fuel injection system. The mode of fuel injection from an injector plays a critical role in determining the performance characteristics of an engine. The lean burn for the engine operation can be easily achieved with this technique. Keeping in view the requirement of the CNG fuel, an electronic direct CNG injection system was designed and developed in the present experimental work.